

Francisco Herrera

Dept. of Computer Science and A.I.

University of Granada, Spain

Email: herrera@decsai.ugr.es

http://sci2s.ugr.es

Outline

- 1. Deep Data: Towards quality data
- 2. Big Learning: CNNs with quality data
- 3. Case of study 1: MNIST
- 4. Case of study 2: Whale detection
- 5. Case of study 3: Knife detection
- 6. Concluding Remarks: More quality data for better knowledge

Outline

- 1. Deep Data: Towards quality data
- 2. Big Learning: CNNs with quality data
- 3. Case of study 1: MNIST
- 4. Case of study 2: Whale detection
- 5. Case of study 3: Knife detection
- 6. Concluding Remarks: More quality data for better knowledge

Quality decisions

("quality models/patterns/rules")

are based on

Quality Data!

MODEL CALCULATIONS

"Garbage In-garbage Out" Paradigm

Quality decisions
("quality patterns/rules")
are based on Quality Data!

More quality data for better knowledge

More quality data for better knowledge

Big data preprocessing is the key to transform raw big data into quality and smart data.

Transforming big data into Smart data: An insight on the use of k-Nearest Neighbours algorithm to obtain quality data I. Triguero, J. Maillo, D. García, S. Garcia, F. Herrera Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2019. Open access

More quality data for better knowledge

Bridge between Big Data and Smart Data:

Big Data Preprocessing

Quality Data

Smart Data Big Data Preprocessing

Big Data The necessary binomial in big data beyond technology and approaching data

Technology

Cloud/clusters Hadoop Ecosystem: HDFS, Spark, Flink, ... Algorithms (Scalable)

Machine Learning and Artificial Intelligence
Scalable, efficient and effective algorithms
MLlib and other software libraries
Exact vs approximate Algorithms

Quality Data Images for Data
Data Augmentation and
Big Data Preprocessing

Big Data

Data Science

Technology

GPU

Deep Learning (Algorithms)

Neural Networks Convolutional NN

Smart Data

Knowledge

More quality data for better knowledge

More quality data for better knowledge

Smart Data + Knowledge Machine Learning (AI)

Outline

- 1. Deep Data: Towards quality data
- 2. Big Learning: CNNs with quality data
- 3. Case of study 1: MNIST
- 4. Case of study 2: Whale detection
- 5. Case of study 3: Knife detection
- 6. Concluding Remarks: More quality data for better knowledge

CNNs and quality data

Artificial Neural Networks Learn and predict on data

Convolutional Neural Networks

Convolutional Neural Networks

CNNs architecture

A CNN automatically learns the values of its filters based on the task you want to perform.

By the way, what is image classification?

CNNs require large amount of data to get better accuracies

Practical solutions: Smart data (deep data) as quality artificial data and quality original data together with Transfer learning

Quality artificial data: Data preprocessing as data augmentation

Data augmentation replicates the instances of the training set by introducing various types of transformations, e.g., translation, rotation, several types of symmetries, etc. Such techniques decrease the sensitivity of the training to noise and overfitting.

Deep Data: Smart data, Quality Data (original and artificial data for Deep Learning)

Data augmentation replicates the instances of the training set by introducing various types of transformations, e.g., translation, rotation, several types of symmetries, etc. Such techniques decrease the sensitivity of the training to noise and overfitting.

Data preprocessing is very important to create quality artificial data

CNNs require large amount of data to get better accuracies

Practical solutions: Smart data (deep data) as quality artificial data and quality original data together with Transfer learning

Transfer learning is a machine **learning** technique where a model trained on one task is re-purposed on a second related task, applying a **fine tuning** process in deep learning.

Fine tuning is a process to take a network model that has already been trained for a given task, and make it perform a second similar task.

Big Learning: Deep Learning + Transfer Learning

Deep Data: Smart data, Quality Data (original and artificial quality data for Deep Learning)

Big Learning: Deep Learning + Transfer Learning

Fundamental Idea

Deep Data and Big Learning:

More quality data for better knowledge

Outline

- 1. Deep Data: Towards quality data
- 2. Big Learning: CNNs with quality data
- 3. Case of study 1: MNIST
- 4. Case of study 2: Whale detection
- 5. Case of study 3: Knife detection
- 6. Concluding Remarks: More quality data for better knowledge

Case of study: MNIST

Handwritting recognition (60.000 training, 10.000 test) Assign a digit from 0 to 9.


```
0000000000000000
/ 1 | 1 / 1 / 1 / 7 1 | / / / /
222222222222
55555555555555555
66666666666666
ファチーマフフフフフフフフノ
88888888888888888
99999999999999
```

- Objective: Analyze the benefit of data-augmentation and ensembles on CNNs
- Methodology:
 - MNIST (60.000 train + 10.000 test) & 10 classes
 - Three CNNs: LeNet, Network3, Dropconnect
- Results

Data augmentation

- ☐ Increase the training dataset volume artificially using transformations (tackling the large amount of data limitations)
- ☐ Objective: Improve model robustness

Lenet-5 like CNNs: LeNet, Network3, DropConnect

Dataset	Combination	# of training		
		instances		
1	Original	60,000		
2	Centering	60,000		
3	Elastic	300,000		
4	Translation	300,000		
5	Rotation	300,000		
6	Elastic-centering	300,000		
7	Rotation-centering	300,000		
8	Translation-elastic	1,500,000		
9	Translation-rotation	1,500,000		
10	Rotation-elastic	1,500,000		
11	Rotation-elastic-centering	1,500,000		
12	Elastic-elastic	1,500,000		

Data-augmentation techniques

Test-set accuracies

	LeNet (10,000 iter.)				LeNet (50,000 iter.)				
Dataset	Average	Best	Epochs	Time(s)	Average	Best	Epochs	Time(s)	
Original	99.08%	99.18%	10.67	267.91	99.05%	99.21%	213.33	1070.29	
Centered	98.85%	99.06%	10.67	203.52	98.95 %	98.09%	213.33	926.38	
Elastic	99.09%	99.19%	2.13	232.75	99.36%	99.44%	42.67	1065.38	
Translation	99.09%	99.32%	2.13	268.75	99.30%	99.41%	42.67	1065.38	
Rotation	99.05%	99.10%	2.13	268.03	99.25%	99.37%	42.67	1065.38	
Elastic-centered	⁵ 99.17%	99.26%	2.13	267.20	99.27%	99.36%	42.67	925.51	
Rotation-centered	98.90%	99.07%	2.13	232.73	99.19%	99.33%	42.67	950.38	
Translation-elastic	⁴ 99.18%	99.32%	0.43	267.43	⁵ 99.39%	99.54%	8.53	1050.38	
Translation-rotation	99.16%	99.40%	0.43	267.41	³ 99.40%	97.55%	8.53	1045.38	
Rotation-elastic	¹ 99.31%	99.39%	0.43	268.14	199.47%	99.57%	8.53	1046.25	
Rotation-elastic-centered	³ 99.19%	99.24%	0.43	232.30	$^{2}99.43\%$	99.52%	8.53	925.68	
Elastic-elastic	² 99.27%	99.45%	0.43	268.10	⁴ 99.40%	99.50%	8.53	1047.64	

Test-set accuracies

	Network3(10 epochs)			Network3(20 epochs)			
Dataset	Average Best T		Time(s)	Average	Best	Time(s)	
Original	99.01%	99.07%	124.45	99.25%	99.25%	205,21	
Centered	98.73%	98.80%	118.32	98.97%	99.01%	196.92	
Elastic	99.49%	99.54%	656,85	³ 99.61%	99.67%	1200,33	
Translation	⁵ 99.49%	99.55%	631.53	⁴ 99.59%	99.63%	1228,71	
Rotation	99.44%	99.50%	636.25	99.44%	99.50%	1256,95	
Elastic-centered	99.32%	99.39%	566.44	99.57%	99.60%	1109,43	
Rotation-centered	98.88%	98.94%	569.04	99.31%	99.32%	1167,32	
Translation-elastic	⁴ 99.54%	99.57%	3647.78	⁵ 99.58%	99.63%	7111,65	
Translation-rotation	³ 99.57%	99.61%	3650.66	99.58%	99.60%	7149,25	
Rotation-elastic	² 99.62%	99.67%	3642,85	² 99.67%	99.69%	6996,23	
Rotation-elastic-centered	99.43%	99.51%	3054,43	99.51%	99.52%	6908,70	
Elastic-elastic	¹ 99.65 %	99.66%	3607.32	99.67 %	99.70%	7189,16	

Test-set accuracies

	DropConnet(100 epochs)			DropConnet(200 epochs)			
Dataset	Average	Best	Time(s)	Average	Best	Time(s)	
Original	98,32%	98,83%	7803.43	98.98%	98,99%	18748.53	
Centered	95.35%	94,46%	6659.31	95.13%	98,85%	18635.54	
Elastic	99.33 %	99,35%	7512.25	99.36%	99,36%	18606.15	
Translation	⁵ 99.43%	99,46%	7736.41	⁵ 99.47%	99,47%	18710.45	
Rotation	99.18%	99,29%	7151.73	99.37%	99,47%	18729.29	
Elastic-centered	96.58%	96,69%	6969.89	97.08%	97,09%	18661.80	
Rotation-centered	98.30%	98,41%	6974.23	98.55%	98,63%	18668.05	
Translation-elastic	99.40%	99,57%	7162.37	³ 99.58%	99,58%	18745.93	
Translation-rotation	² 99.57%	99,59%	7410.32	199.69%	99,69%	18772.40	
Rotation-elastic	³ 99.54%	99,60%	7397.40	⁴ 99.56%	99,56%	18724.38	
Rotation-elastic-centered	⁴ 99.47%	99,49%	7803.73	99,44%	99,46%	18220.50	
Elastic-elastic	¹ 99,58 %	99,59%	7911.30	² 99,59%	99,61%	18712.22	

Results

LeNet (500) neurons)	Netw	ork3	DropConnect		
10,000 iter	50,000 iter	10 epochs	20 epochs	100 epochs	200 epochs	
99,55%	99,57%	99,72%	99,69%	99,72%	99,66%	
99,43%	99,54%	99,69%	99,67%	99,69%	99,68%	
	10,000 iter 99,55%	99,55% 99,57%	10,000 iter 50,000 iter 10 epochs 99,55% 99,57% 99,72%	10,000 iter 50,000 iter 10 epochs 20 epochs 99,55% 99,57% 99,72% 99,69%	10,000 iter 50,000 iter 10 epochs 20 epochs 100 epochs 99,55% 99,57% 99,72% 99,69% 99,72%	

Error: 0.28% versus state of the art ensemble 0.16%

Results

The 28 misclassified characters (15 different)

The 13 handwritten digits misclassified by ensemble-5 of DropConnet and Network3

May 2019, Granada team (12 errors). World RECORD

Outline

- 1. Deep Data: Towards quality data
- 2. Big Learning: CNNs with quality data
- 3. Case of study 1: MNIST
- 4. Case of study 2: Whale detection
- 5. Case of study 3: Knife detection
- 6. Concluding Remarks: More quality data for better knowledge

Results

Blowing

Breaching

Peduncle

Blowing

10 m

Logging

Spyhopping

10 m

Submerged

Results

Deep Data and Big Learning: More quality data for better knowledge

Outline

- 1. Deep Data: Towards quality data
- 2. Big Learning: CNNs with quality data
- 3. Case of study 1: MNIST
- 4. Case of study 2: Whale detection
- 5. Case of study 3: Knife detection
- Concluding Remarks: More quality data for better knowledge

Project: Weapon Detection Alarm in Video Surveillance

The future of smart security

One of the ways to reduce the threat of violence generated by weapons is the early detection of their presence with enough time for agents or watchmen to act.

A novel solution could integrate an automatic weapon detection system with video surveillance system.

Project: Weapon Detection Alarm in Video Surveillance

No published work, patent, or commercial product addresses the problem of gun detection in real-time video using Deep Learning.

Our publication (February 2017) was the first work that use Deep Learning to detect weapons in video surveillance.

Automatic Handgun Detection Alarm in Videos Using Deep Learning

Roberto Olmos¹, Siham Tabik¹, and Francisco Herrera^{1,2}

https://arxiv.org/abs/1702.05147

MIT Technology Review

Connectivity

The Best of the Physics arXiv (week ending March 4, 2017)

This week's most thought-provoking papers from the Physics arXiv.

by Emerging Technology from the arXiv March 4, 2017

A roundup of the most interesting papers from the arXiv:

R Olmos,, S Tabik, F Herrera Automatic handgun detection alarm in videos using deep learning Neurocomputing 275, 67-72, 2018

Automatic Handgun Detection Alarm in Videos Using Deep Learning

Project: Weapon Detection Alarm in Video Surveillance

- Objective: Develop a fast and accurate arms detection model in videos
- Methodology: To create a database (knife / no knife) + To develop a Deep learning model

VGG16

× Fine-tuning

CNN learns from scratch fitting weights through Backpropagation Test: 178 knifes and 138 not knifes

	Knife	no knife
Knife 178	147	31
No knife 138	37	101

Accuracy = 0.799Recall = 0.826F1 score = 0.812

FP

Knife	49,6%

69,8%

73,7%

50,1%

VGG16 Previous FP ✓ Fine-tuning

Fine-tuning improve classification because of pre-training

Class	Probability
No-Knife	99,99%
Knife	0%

Class	Probability
No-knife	98,77%
Knife	0%

Class	Probability
No-knife	99,99%
Knife	0%

Big Learning

VGG16 ✓ Fine-tuning

CNN knows to extract key features and learns to classify

Backpropagation fit fully connected layers only

Test: 178 knifes and 138 not knifes

	Knife no knife				
Knife 178	168	10			
No knife 142	7	135			

Accuracy = 0.96 (+ 0.16)

Recall = 0.944

F1 score = 0.952

Big Learning

Output

Challenge: Brightness conditions may deteriorate image quality

Challenge: Brightness conditions may deteriorate image quality

Fig. 7. An example of the detection results in two similar situations with different brightness conditions.

Challenge: Brightness conditions may deteriorate image quality

Table 6
Detection performance obtained on videos recorded in different brightness conditions.

Brightness	Knife size	#frames	#GT_P	#TP	#FP	Precision	Recall	F1
	Large	121	112	78	0	100%	69.64%	82.1%
High	Medium	107	90	44	0	100%	48.89%	65.67%
	Small	137	103	53	0	100%	51.46%	67.95%
			Average			100%	56.66%	71.91%
	Large	109	98	85	0	100%	86.73%	92.89%
Medium	Medium	116	98	73	0	100%	74.49%	85.38%
	Small	138	110	64	0	100%	58.18%	73.56%
			Average			100%	73.13%	83.94%
	Large	126	114	104	1	99.05%	92.04%	95.41%
Low	Medium	114	100	70	0	100%	70%	82.35%
	Small	138	101	74	0	100%	73.27%	84.57%
			Average			99.68%	78.44%	87.44%
	Large	119	110	95	0	100%	86.36%	92.68%
Artificial	Medium	113	99	75	3	96.15%	78.13%	86.21%
	Small	96	90	65	4	94.2%	75.58%	83.87%
			Average			96.78%	80.02%	87.59%

Movement also generates noise and distortion

DaCOLT: Darkening and Contrast at Learning and Test stages

Enhance robustness through data-augmentation and Preprocessing

Tackling brightness via darkening and contrast.

SSD(InceptionV2)
R-FCN(ResNet101)
Faster R-CNN (Inception-ResNet-V2,
ResNet50, ResNet101, and Inception\

Castillo, S Tabik, F Pérez, R Olmos, F Herrera Brightness guided preprocessing for automatic cold steel weapon detection in surveillance videos with deep learning Neurocomputing 330, 151-161, 2019

Fig. 8. An illustration of DaCoLT procedure applied at both, learning and test time.

Darkening and Contrast at Learning and Test stages

DaCoLT procedure consists of two stages:

- Training the detection model on a selected range of brightness conditions using data-augmentation
- Achieving the ideal brightness condition by adjusting the darkening of the frames and improving their visual quality using a preprocessing approach (CLAHE) before analyzing them with the detection model.

Fig. 8. An illustration of DaCoLT procedure applied at both, learning and test time.

DaCoLT image sample

Original

No detection

Preprocessing

Detection: 71%

Preprocessing + data aug.

Detection: 99%

Detection in original condition

The knife
 Surface
 reflects and
 make difficult
 the detection

 Sometimes the knife even dissapear

Case of study: Knife detection Detection applying DaCoT

- Preprocessing applied at inference stage
- Improve the reflectance in brighter areas
- Slight True
 Positives rise

Detection applying DaCoLT

- The preprocessing technique is applied for dataaugmentation
- High True Positives rate rises

DaCoLT results

High brightness conditions with different knife sizes

	Knife size	#frames	#GT_P	#TP	#FP	Precision	Recall	F1
Original	Large	121	112	78	0	100%	69.64%	82.11%
High	Medium	107	90	44	0	100%	48.89%	65.67%
Brightness	Small	137	103	53	0	100%	51.46%	67.95%
			Average			100%	56.66%	71.91%
Guided brightness	Large	121	112	85	0	100%	75.89%	86.29%
DaCoT	Medium	107	90	56	0	100%	62.22%	76.71%
(Test time)	Small	137	103	53	0	100%	51.46%	67.95%
,			Average			100%	63.19%	76.98%
Guided brightness	Large	121	112	84	0	100%	75%	85.71%
DaCoLT	Medium	107	90	64	0	100%	71.11%	83.12%
(Learning+Test)	Small	137	103	74	0	100%	71.84%	83.61%
, ,			Average		(100%	72.65%	84.15%

Simulation applying DaCoLT: Brightness guided preprocessing for knife detection

Deep Data and Big Learning: More quality data for better knowledge

Outline

- 1. Deep Data: Towards quality data
- 2. Big Learning: CNNs with quality data
- 3. Case of study 1: MNIST
- 4. Case of study 2: Whale detection
- 5. Case of study 3: Knife detection
- 6. Concluding Remarks: More quality data for better knowledge

In contrast to the classical classification models, the high abstraction capacity of CNNs allows them to work on the original high dimensional space, which reduces the need for manually preparing the input.

However, a suitable preprocessing is still important to improve the quality of the result (including image preprocessing, data augmentation, ...)

The supervised Deep Learning depends a lot on that phase of human annotation/labeling/selection.

- Quality data preprocessing techniques adapt the data to fulfill the input demands of each data algorithm.
- Quality data preprocessing is an essential part of any automatic learning process.
- Quality data preprocessing techniques (including Data Augmentation) are very important for Deep Learning

Central idea. Deep Data and Big Learning: More quality data for better knowledge

Limitations and reflection

Focused in image analysis, the creation of the "Smart data" level databases in the context of supervised deep learning always goes through the manual revision of the expert notebook.

There are still no automatic methods that create "Smart data" for Deep Learning without the help of the human annotation".

Limitations and reflection

Remember: There are still no automatic methods that create "Smart data" for the Deep Learning without the help of the human annotation.

There are open research studies towards quality data

Imbalanced classification: It needs preprocessing for the minority class

What is the meaning of noise data in deep learning?

Difficult instances for classification, selection and filtering

What is the correspondence with data reduction for getting quality small data for deep learning?

Ending as we began

```
Quality decisions
("quality models/patterns/rules")
are based on
Quality Data!
```

More quality data for better knowledge

Quality Data to drive Deep Learning Applications

Deep Data and Big Learning:
More quality data for better knowledge